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Abstract

We study the accuracy of a neural network (NN)
with one hidden layer and ReLU activation in
predicting the area of polytopes after a change
of coordinates. Specifically, we train a NN with
respect to a given database and then we apply a
change of coordinates to create a transformed
dataset of polytopes with different vertices but
the same area. Then, we calculate the mean
absolute error (MAE) of our trained neural net-
work in estimating the area of the polytopes in
the transformed datasets.

1 Preliminaries

In this section, we introduce some definitions and
notation that will be used throughout the paper.

1.1 Labeled Databases of Polytopes
Given a finite collection of points q1, · · · , qn in the
plane with integer coefficients, the lattice polytope
defined by these points is given by

P :=

{ n∑
i=1

λiqi

∣∣∣∣ 1 ≥ λi ≥ 0,
∑

λi = 1

}
Every lattice polytope P has a non-negative area,
which can be computed with an equation known as
Gauss’ formula:

Area(P ) =
1

2

(
n∑

i=1

det

(
qi1 q(i+1)1

qi2 q(i+1)2

))
.

where qi = (qi1, qi2).
We will construct a labeled database, we con-

struct a vector of coordinates from the vertices of
a polytope. Then, to each vector, we can associate
the area of the corresponding polytope. For ex-
ample, given the pentagon in Figure 1, its area is
5/2. This database carries also the information of
the vertices ordering. Indeed, there are 5! = 120
possible ways to order the entries. Therefore, we
can obtain a coordinate vector such as

(0, 1, 1, 0, 0,−1,−1,−1,−1, 0) −→ 5/2,

or

(1, 0,−1, 0, 0, 1, 0,−1,−1,−1) −→ 5/2.
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Figure 1: Pentagon and its vertices

For the same pentagon. The set of vertices of poly-
topes and their areas define a labeled database de-
noted as D and given by

D := {(xi, yi) | xi vertices of Pi, yi = Area(Pi)}.

1.2 Neural Networks
A neural network is certain function F : Rn →
Rs, where x is mapped to x = F (x), constructed
by iterating linear maps and a type of nonlinear
function known as an activation function. There
are many types of neural networks with various
complex features. In this work, we focus on neural
networks with one hidden layer of m nodes:

Fm(x) =
m∑
i=1

aimax{0,wi · x+ bi} wi ∈ (R2)n.

In our case, n is the number of vertices of the
polytope. The coefficients wi and ai of the linear
maps are called the weights of the neural network,
and the bi are the bias terms.

Given a labeled database D, to "train" a neural
network means finding the values of the weights wi,
ai, and bi that minimize the error between Fm(x)
and y. The final error is known as the training error:

RT (Fm, D) =
1

|D|
∑

(xi,yi)∈D

|Fm(xi)− yi|2.

The goal of training, which can be done via gradient
descent, is to minimize this error and achieve a
high degree of accuracy when predicting the areas
of polytopes in a new dataset. We remark that
such idea of using neural network in mathematical
objects has been used in works such as (Berman
et al., 2022), (Bernal et al., 2023), (He, 2022) and
(Bao et al., 2021).
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2 Our Mathematical Experiment

We start with the observation: We can change the
coordinate system without altering the area of a
polytope. For example, the change of coordinates
x → x+ y and y → x+2y will transform the pen-
tagon, see Figure 2, but keeping the area constant.
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Figure 2: Pentagon after the change of coordinates x 7→
x+ y and y 7→ y

Given a labeled database of polytopes D and a
change of coordinates induced by a matrix B with
det(B) = 1 and integer entries, we transform each
polytope P as follows:

B · P :=

{ n∑
i=1

λi(Bqi)

∣∣∣∣ 1 ≥ λi ≥ 0,
∑

λi = 1

}
Notice that Area(P ) = Area(B · P ), then we can
generate a new labeled database of polytopes:

B ·D := {(vertices(B · P ), Area(P )) | P in D}.

To study the accuracy of our Neural Network,
we complete the following steps:

1. We start with a database D of polytopes with
a fixed number of vertices n. Each polytope
has three vectors of coordinates (chosen ran-
domly) so that the neural network does not
learn the ordering of the vertices.

2. For a fixed number of nodes m, we train a
ReLU neural network Fm(x) with our original
database D.

3. Given a change of coordinates induced by the
matrix

Bk =

(
1 1
0 1

)k

, x 7→ x+ ky, y 7→ y,

we construct a database of polytopes Bk ·D.
The matrix B is mathematically meaningful.
It is a generator of the group SL(2,Z).

4. We calculate the error of using Fm(x) to pre-
dict the areas of the new polytopes Bk ·D.

5. We plot the change in the error with respect to
the exponent k.

These steps allow us to explore how accurately
the neural network can predict the areas of trans-
formed polytopes and how sensitive the prediction
is to changes in the coordinate system.

3 Computational results

We completed the above steps for polytopes with
3 ≤ n ≤ 7 vertices. In each case, we varied the
number of nodes m used in the neural network.
The following are our main results.

1. The error grows linearly. In all cases, we ob-
served that the error changes linearly with respect
to the parameter k.

Figure 3: Behavior of the error under change of coordi-
nates x 7→ x+ ky and y 7→ y.

2. The impact of the number of nodes The
slope and intercept of the linear equation that de-
scribe the error depend on the number of nodes
in the hidden layer of the neural network. How-
ever, the relationship does not seem straightforward.



Next, we illustrate the cases for n = 4, 5 and n = 7.

Figure 4: Behavior of the slopes (blue) and the intercets
(red) with respect to the number of nodes.
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